Kinetic and regeneration studies of photocatalytic magnetic separable beads for chromium (VI) reduction under sunlight.
نویسندگان
چکیده
Physical adsorption and photocatalytic reduction of Cr(VI) in magnetic separable beads were investigated. In order to elucidate the kinetics of photocatalytic process, operating parameters such as catalyst dosage and the initial concentration were examined in detail. It was observed that the reduction rate of Cr(VI) increased with an increase in the catalyst loading, as this translated into an increase in the number of available active sites. Critical scrutiny of the percentage of the initial reduction rate versus time at various initial concentration of Cr(VI) revealed that the rate of substrate conversion decreased as the initial concentration increased. The kinetic analysis of the photoreduction showed that the removal of Cr(VI) satisfactory obeyed the pseudo first-order kinetic according to the Langmuir-Hinshelwood (L-H) model and the absorption of Cr(VI) on the magnetic beads surfaces was the controlling step in the entire reduction process. Furthermore, desorption experiments by elution of the loaded gels with sodium hydroxide indicated that the magnetic photocatalyst beads could be reused without significant losses of their initial properties even after 3 adsorption-desorption cycles.
منابع مشابه
Photocatalytic magnetic separable beads for chromium (VI) reduction.
Magnetically separable photocatalyst beads containing nano-sized iron oxide in alginate polymer were prepared. This magnetic photocatalyst beads are used in slurry-type reactors. The magnetism of the catalyst arises from the nanostructured particles gamma-Fe(2)O(3), by which the catalyst can be easily recovered by the application of an external magnetic field. These synthesized beads are sunlig...
متن کاملPreparation of ZnO nanocatalyst supported on todorokite and photocatalytic efficiency in the reduction of chromium (VI) pollutant from aqueous solution
In this research, a new effective photocatalyst was prepared by supporting ZnO on a Todorokite (TD). This catalyst was characterized by employing scanning electron microscopy (SEM-EDX) and X-Ray Diffraction (XRD) patterns. The optical properties of the samples were measured by diffuse reflectance spectroscopy (DRS). The purpose of using the ZnO/TD as a photocatalyst was to reduction Cr(VI), whi...
متن کاملOptimization of Cr(VI) Photocatalytic Reduction by UV/TiO2 : Influence of Inorganic and Organic species and Kinetic Study
Background & Aims of the Study: Chromium is widely detected in surface waters and underground waters, which usually appear as Cr(VI), and Cr(III), at sites associated with industrial activities. Cr(VI), in effluent streams with a high level of mobility and notorious mutagenic and carcinogenic toxicity; thus Cr(III) does not have much mobility in soil. So, converting it into less h...
متن کاملبررسی احیای فتوکاتالیستی کروم ششظرفیتی توسط نانوذرات سبز آهن در محلولهای آبی: یک مطالعه آزمایشگاهی
Background and Objective: Hexavalent chromium (Cr (VI)) is a highly toxic pollutant that isknown as a carcinogen and mutagen agent to humans. Photocatalytic reduction is one of the known ways to remove these contaminants. Therefore, the aim of this study was to investigate the catalytic effect of green iron nanoparticles, as eco-friendly materials, on photocatalytic reduction of Cr (VI) from wa...
متن کاملExperimental Study on the Factors Affecting Hexavalent Chromium Bioreduction by Bacillus cereus
Chromium through natural processes and human activities enters the air, soil and water. Chromium-resistant bacteria are capable of reducing toxic Cr(VI) to less toxic Cr(III). In this work, batch studies were conducted to evaluate the effect of environmental factors on the rate of Cr(VI) reduction from synthetic wastewater of metal plating industry by Bacillus cereus under aerobic conditions. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of hazardous materials
دوره 186 1 شماره
صفحات -
تاریخ انتشار 2011